Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We consider the problem of scheduling to minimize asymptotic tail latency in an M/G/1 queue with unknown job sizes. When the job size distribution is heavy-tailed, numerous policies that do not require job size information (e.g. Processor Sharing, Least Attained Service) are known to be strongly tail optimal, meaning that their response time tail has the fastest possible asymptotic decay. In contrast, for light-tailed size distributions, only in the last few years have policies been developed that outperform simple First-Come First-Served (FCFS). The most recent of these is γ-Boost, which achieves strong tail optimality in the light-tailed setting. But thus far, all policies that outperform FCFS in the light-tailed setting, including γ-Boost, require known job sizes. In this paper, we design a new scheduling policy that achieves strong tail optimality in the light-tailed M/G/1 with unknown job sizes. Surprisingly, the optimal policy turns out to be a variant of the Gittins policy, but with a novel and unusual feature: it uses a negative discount rate. Our work also applies to systems with partial information about job sizes, covering γ-Boost as an extreme case when job sizes are in fact fully known.more » « lessFree, publicly-accessible full text available May 27, 2026
-
Free, publicly-accessible full text available June 10, 2026
-
Service level objectives (SLOs) for queueing systems typically relate to the tail of the system's response time distribution T. The tail is the function mapping a time t to the probability P[T > t]. SLOs typically ask that high percentiles of T are not too large, i.e. that P[T > t] is small for large t.more » « less
-
We study the problem of scheduling jobs in a queueing system, specifically an M/G/1 with light-tailed job sizes, to asymptotically optimize the response time tail. This means scheduling to make P[T > t], the chance a job's response time exceeds t, decay as quickly as possible in the t \to \infty limit. For some time, the best known policy was First-Come First-Served (FCFS), which has an asymptotically exponential tail: P[T > t] ~ C e^-γ t . FCFS achieves the optimal decay rate γ, but its tail constant C is suboptimal. Only recently have policies that improve upon FCFS's tail constant been discovered. But it is unknown what the optimal tail constant is, let alone what policy might achieve it. In this paper, we derive a closed-form expression for the optimal tail constant C, and we introduce γ-Boost, a new policy that achieves this optimal tail constant. Roughly speaking, γ-Boost operates similarly to FCFS, but it pretends that small jobs arrive earlier than their true arrival times. This significantly reduces the response time of small jobs without unduly delaying large jobs, improving upon FCFS's tail constant by up to 50% with only moderate job size variability, with even larger improvements for higher variability. While these results are for systems with full job size information, we also introduce and analyze a version of γ-Boost that works in settings with partial job size information, showing it too achieves significant gains over FCFS. Finally, we show via simulation that γ-Boost has excellent practical performance.more » « less
An official website of the United States government
